Experiment¶
Evaluate one experiment described as a list of metrics and checks.
See Statistics for details about statistical method used
and Evaluation
for description of output.
Source code in src/epstats/toolkit/experiment.py
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 |
|
evaluate_agg(goals)
¶
Evaluate all metrics and checks in the experiment from already pre-aggregated goals.
This method is usefull when there are too many units in the experiment to evaluate it
using evaluate_by_unit
.
Does best effort to fill in missing goals and variants with zeros.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
goals |
DataFrame
|
dataframe with one row per goal and aggregated data in columns |
required |
goals
dataframe columns:
exp_id
- experiment idexp_variant_id
- variantunit_type
- randomization unit typeagg_type
- level of aggregationgoal
- goal name- any number of dimensional columns, e.g. column
product
containing valuesp_1
count
- number of observed goals (e.g. conversions)sum_sqr_count
- summed squared number of observed goals per unit, it is similar tosum_sqr_value
sum_value
- value of observed goalssum_sqr_value
- summed squared value per unit. This is used to calculate sample standard deviation from pre-aggregated data (it is a term \(\sum x^2\) in \(\hat{\sigma}^2 = \frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n-1}\)).count_unique
- number of units with at least 1 observed goal
Returns:
Type | Description |
---|---|
Evaluation
|
set of dataframes with evaluation |
Usage:
from epstats.toolkit import Experiment, Metric, SrmCheck
experiment = Experiment(
'test-conversion',
'a',
[Metric(
1,
'Click-through Rate',
'count(test_unit_type.unit.click)',
'count(test_unit_type.global.exposure)'),
],
[SrmCheck(1, 'SRM', 'count(test_unit_type.global.exposure)')],
unit_type='test_unit_type')
# This gets testing data, use other Dao or get aggregated goals in some other way.
from epstats.toolkit.testing import TestData
goals = TestData.load_goals_agg(experiment.id)
# evaluate experiment
ev = experiment.evaluate_agg(goals)
# work with results
print(ev.exposures)
print(ev.metrics[ev.metrics == 1])
print(ev.checks[ev.checks == 1])
# this is to assert that this code sample works correctly
from epstats.toolkit.testing import TestDao
assert_experiment(experiment, ev, TestDao(TestData()))
Input data frame example:
exp_id exp_variant_id unit_type agg_type goal product count sum_sqr_count sum_value sum_sqr_value count_unique
test-srm a test_unit_type global exposure 100000 100000 100000 100000 100000
test-srm b test_unit_type global exposure 100100 100100 100100 100100 100100
test-srm a test_unit_type unit conversion 1200 1800 32000 66528 900
test-srm a test_unit_type_2 global conversion product_1 1000 1700 31000 55000 850
Source code in src/epstats/toolkit/experiment.py
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
|
evaluate_by_unit(goals)
¶
Evaluate all metrics and checks in the experiment from goals grouped by unit_id
.
This method is useful when there are not many (<1M) units in the experiment to evaluate it.
If there many units exposed to the experiment, pre-aggregate data and use evaluate_agg
.
Does best effort to fill in missing goals and variants with zeros.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
goals |
DataFrame
|
dataframe with one row per goal and aggregated data in columns |
required |
goals
dataframe columns:
exp_id
- experiment idexp_variant_id
- variantunit_type
- randomization unit typeunit_id
- (randomization) unit idagg_type
- level of aggregationgoal
- goal name- any number of dimensional columns, e.g. column
product
containing valuesp_1
count
- number of observed goalssum_value
- value of observed goals
Returns:
Type | Description |
---|---|
Evaluation
|
set of dataframes with evaluation |
Usage:
from epstats.toolkit import Experiment, Metric, SrmCheck
experiment = Experiment(
'test-real-valued',
'a',
[Metric(
2,
'Average Bookings',
'value(test_unit_type.unit.conversion)',
'count(test_unit_type.unit.exposure)')
],
[],
unit_type='test_unit_type')
# This gets testing data, use other Dao or get aggregated goals in some other way.
from epstats.toolkit.testing import TestData
goals = TestData.load_goals_by_unit(experiment.id)
# evaluate experiment
ev = experiment.evaluate_by_unit(goals)
# work with results
print(ev.exposures)
print(ev.metrics[ev.metrics == 1])
print(ev.checks[ev.checks == 1])
# this is to assert that this code sample works correctly
from epstats.toolkit.testing import TestDao
assert_experiment(experiment, ev, TestDao(TestData()))
Input data frame example:
exp_id exp_variant_id unit_type unit_id agg_type goal product count sum_value
test-srm a test_unit_type test_unit_type_1 unit exposure 1 1
test-srm a test_unit_type test_unit_type_1 unit conversion product_1 2 75
test-srm b test_unit_type test_unit_type_2 unit exposure 1 1
test-srm b test_unit_type test_unit_type_3 unit exposure 1 1
test-srm b test_unit_type test_unit_type_3 unit conversion product_2 1 1
Source code in src/epstats/toolkit/experiment.py
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
|
evaluate_wide_agg(goals)
¶
This is a simplified version of the method evaluate_agg
.
It consumes simple input goals
dataframe, transfers it into suitable dataframe format and evaluate it using general method evaluate_agg
.
It assumes that the first two columns are name of the experiment and variants. Than follows columns with data.
See usage of the method in the notebook Ad-hoc A/B test evaluation using Ep-Stats.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
goals |
DataFrame
|
dataframe with one row per variant and aggregated data in columns |
required |
Possible goals
dataframe columns (check the input dataframe example):
exp_id
- experiment idexp_variant_id
- variantclicks
- sum of clicksviews
- sum of viewsbookings
- sum of bookingsbookings_squared
- sum of bookings squared
Returns:
Type | Description |
---|---|
Evaluation
|
set of dataframes with evaluation |
Usage:
from epstats.toolkit import Experiment, SimpleMetric, SimpleSrmCheck
from epstats.toolkit.results import results_long_to_wide, format_results
from epstats.toolkit.testing import TestData
# Load Test Data
goals = TestData.load_goals_simple_agg()
# Define the experiment
unit_type = 'test_unit_type'
experiment = Experiment(
'test-simple-metric',
'a',
[
SimpleMetric(1, 'Click-through Rate (CTR)', 'clicks', 'views', unit_type),
SimpleMetric(2, 'Conversion Rate', 'conversions', 'views', unit_type),
SimpleMetric(3, 'Revenue per Mille (RPM)', 'bookings', 'views', unit_type, metric_format='${:,.2f}', metric_value_multiplier=1000),
],
[SimpleSrmCheck(1, 'SRM', 'views')],
unit_type=unit_type)
# Evaluate the experiment
ev = experiment.evaluate_wide_agg(goals)
# Work with results
print(ev.exposures)
print(ev.metrics)
print(ev.checks)
# Possible formatting of metrics
ev.metrics.pipe(results_long_to_wide).pipe(format_results, experiment, format_pct='{:.1%}', format_pval='{:.3f}')
Input dataframe example:
experiment_id variant_id views clicks conversions bookings bookings_squared
my-exp a 473661 48194 413 17152 803105
my-exp b 471485 47184 360 14503 677178
my-exp c 477159 48841 406 15892 711661
my-exp d 474934 49090 289 11995 566700
Source code in src/epstats/toolkit/experiment.py
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
|
get_dimension_columns()
¶
Returns a list of all dimensions used in all metrics in the experiment.
Source code in src/epstats/toolkit/experiment.py
580 581 582 583 584 |
|
get_goals()
¶
List of all goals needed to evaluate all metrics and checks in the experiment.
Returns:
Type | Description |
---|---|
List[EpGoal]
|
list of parsed structured goals |
Source code in src/epstats/toolkit/experiment.py
485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
|